

Journal of Organometallic Chemistry 613 (2000) 42-49

Synthesis of novel quadruply bridged M_2Se_4 clusters *trans/anti* and *trans/syn-*[(η^5 -RC₅H₄)₂M₂(μ -Se)₂(μ -SeCH₂Ph)₂] (M = Mo, W) via an unexpected reaction of M=M triply bonded complexes [(η^5 -RC₅H₄)₂M₂(CO)₄] with dibenzyl diselenide. Crystal structures of a pair of isomers *trans/anti-* and *trans/syn-*[(η^5 -EtO₂CC₅H₄)₂Mo₂(μ -Se)₂(μ -SeCH₂Ph)₂]

Li-Cheng Song *, Yao-Cheng Shi, Wen-Feng Zhu, Qing-Mei Hu, Lin-Hong Weng

Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China Received 22 March 2000; received in revised form 12 June 2000; accepted 24 June 2000

Abstract

The unexpected reaction of triply bonded complexes $[(\eta^5-\text{RC}_5\text{H}_4)_2\text{M}_2(\text{CO})_4]$ with dibenzyl diselenide $(\text{PhCH}_2)_2\text{Se}_2$ in toluene at reflux gave a series of isomeric M₂Se₄ clusters *trans/anti*- $[(\eta^5-\text{RC}_5\text{H}_4)_2\text{M}_2(\mu-\text{Se})_2(\mu-\text{SeCH}_2\text{Ph})_2]$ (**1a**, M = Mo, R = MeCO; **2a**, Mo, MeO₂C; **3a**, Mo, EtO₂C; **4a**, W, MeCO; **5a**, W, MeO₂C; **6a**, W, EtO₂C) and *trans/syn*- $[(\eta^5-\text{RC}_5\text{H}_4)_2\text{M}_2(\mu-\text{Se})_2(\mu-\text{Se}C\text{H}_2\text{Ph})_2]$ (**1b**, M = Mo, R = MeCO; **2b**, Mo, MeO₂C; **3b**, Mo, EtO₂C; **4b**, W, MeCO; **5b**, W, MeO₂C; **6b**, W, EtO₂C) in combined 20–41% yields. In addition, the reaction of $[(\eta^5-\text{MeO}_2\text{CC}_5\text{H}_4)_2\text{W}_2(\text{CO})_4]$ with (PhCH₂)₂Se₂ in solid state at 90°C also afforded **5a** and **5b** in a total of 32% yield. The structures of these new clusters were fully characterized by elemental analysis and spectroscopy; those for **3a** and **3b** were confirmed by single-crystal X-ray diffraction techniques. © 2000 Elsevier Science B.V. All rights reserved.

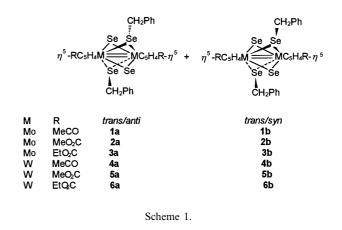
Keywords: (PhCH₂)₂Se₂; Metal-metal multiple bond; Mo₂Se₂ clusters; W₂Se₂ clusters; Crystal structures

1. Introduction

Over the last two decades, considerable attention has been paid to studies on the chemistry of transition metal-metal triply bonded complexes, such as Group 6 metal-metal triply bonded dimers $[(\eta^5-RC_5H_4)_2M_2-(CO)_4]$ (M = Cr, Mo, W; $\eta^5-RC_5H_4$ is parent or substituted cyclopentadienyl ligands) [1]. On the other hand, the chemistry of transition metal complexes containing both Group 6 metals and chalcogenido ligands has also been extensively studied, not only because of their importance to biology and catalysis [2–6], but also because of their novel structures and widespread use for the synthesis of organometallic compounds, and particularly organometallic clusters [7–13]. Recently, based on our previous studies associated with such organometallic systems [14], we continued to investigate the reaction of triply bonded complexes $[(\eta^5 - \text{RC}_5\text{H}_4)_2\text{M}_2(\text{CO})_4]$ (M = Mo, W) with dibenzyl diselenide in refluxing toluene. Interestingly, this reaction has unexpectedly led us to obtain a series of quadruply bridged M₂Se₄ isomers *trans/anti*- and *trans/syn-*[($\eta^5 - \text{RC}_5\text{H}_4$)₂M₂(μ -Se)₂(μ -SeCH₂Ph)₂] (M = Mo, W). Herein we wish to report on such an unexpected result by describing the synthetic procedures and characterization of these novel isomers, including the X-ray structural analyses for one pair of those isomers.

2. Results and discussion

2.1. Synthesis and characterization of 1a,b-6a,b


It was found that an equimolar amount of triply bonded complexes $[(\eta^5 - RC_5H_4)_2M_2(CO)_4]$ (M = Mo,

^{*} Corresponding author. Tel.: + 86-22-2350-2562; fax: + 86-22-2350-4853.

E-mail address: lcsong@public.tpt.tj.cn (L.-C. Song).

W; R = MeCO, MeO_2C , EtO_2C) reacted with $(PhCH_2)_2Se_2$ in refluxing toluene, after separation by preparative thin-layer chromatography (TLC), to afford a series of M_2Se_4 clusters, namely *trans/anti*- and *trans/syn-*[(η^5 -RC₅H₄)₂M₂(μ -Se)₂(μ -SeCH₂Ph)₂] (**1a,b**-**6a,b**) (Scheme 1).

As shown in Scheme 1, while isomers 1a-6a and **1b**-**6b** all have their two η^5 -RC₅H₄, two naked Se and two PhCH₂Se ligands in the trans arrangement with respect to the M-M vector, isomers 1a-6a have their two benzyl groups attached to Se atoms in the anti orientation and isomers 1b-6b in the syn orientation with respect to the four-membered M_2Se_2 (selenolato) ring. The structures of products 1a,b-6a,b have been well characterized by IR, ¹H-NMR and ⁷⁷Se-NMR spectroscopies, and especially by crystal X-ray diffraction analyses of 3a and 3b. The IR spectra of 1a,b-6a,b exhibited one strong absorption band at 1674-1680 or 1704–1720 cm⁻¹ characteristic of their corresponding ketonic and ester carbonyls, respectively. The ¹H-NMR spectra of these isomers displayed a singlet at 2.79-3.06 ppm, assigned to their methylene hydrogen atoms of the benzyl groups. The other signals appeared in their ¹H-NMR spectra indicated the presence of their respective acetyl, methoxy or ethoxy carbonyls, phenyl and η^{5} -RC₅H₄(CO)₂M \equiv M(CO)₂C₅H₄R- η^{5} + (PhCH₂)₂Se₂

cyclopentadienyl groups. Fig. 1 represents the ¹H-NMR spectra of a pair of isomers, **6a** and **6b**, from which it can be seen that such two isomers have quite different ¹H-NMR patterns in the spectral part caused by the four hydrogens of each substituted Cp ring. That is, **6a** has three sets of multiplets, one at 5.96-6.18 ppm, attributed to H³/H⁴ remote from the substituent, and

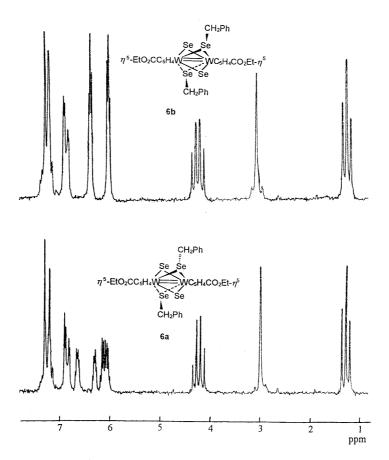
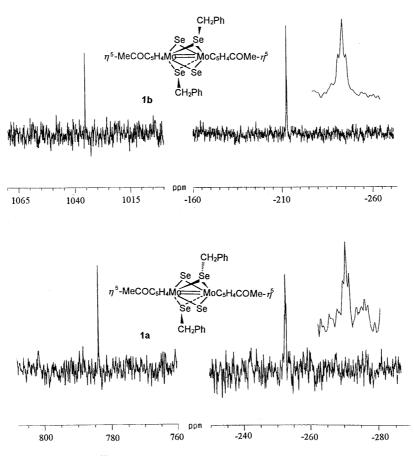
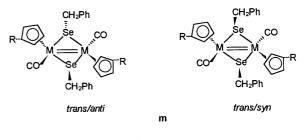


Fig. 1. ¹H-NMR spectra of one pair of isomers 6a and 6b.




Fig. 2. ⁷⁷Se-NMR spectra of one pair of isomers 1a and 1b.

the other two at 6.20-6.36 and 6.52-6.68 ppm, assigned to H²/H⁵ close to the substituent [15], whereas **6b** has two sets of apparent triplets, one at 6.03 ppm and the other at 6.38 ppm assigned to H³/H⁴ and H²/H⁵ [15], respectively.

Since ⁷⁷Se-NMR spectroscopy is a very useful tool for characterization of organometallic selenium complexes [16], we determined the ⁷⁷Se-NMR spectra of representatives 1a, 1b, 4a and 5b among isomers 1a,b-6a,b. Fig. 2 shows the ⁷⁷Se-NMR spectra of a pair of isomers, 1a and 1b, in which the singlets at 783.9 and 1035.5 ppm can be assigned to the naked Se atoms of **1a** and **1b**, the triplets at -252.8 and -212.8 ppm can be assigned to the Se atoms attached to benzyl groups of **1a** and **1b**, respectively. The coupling constants ${}^{2}J_{\text{SeH}}$ for the triplets caused by coupling of the Se atom with two methylene H atoms of the benzyl group are 19.2 Hz (1a) and 16.9 Hz (1b), 17.7 Hz (4a) and 16.6 Hz (5b), which are very close to those of the compounds containing similar structural units, such as $Fe_2(\mu$ -SeCH) $[Fe_2(CO)_6{\mu-SeCHC(O)CRCPhCr(CO)_3CPhS-\mu}]$ in (R = H, Ph) [17].

It is worth to point out that isomers **5a,b** could also be synthesized through the reaction under solid state conditions in comparable yields. For example, an equimolar amount of $[(\eta^5-MeO_2CC_5H_4)_2W_2(CO)_4]$ reacted with $(PhCH_2)_2Se_2$ at 90°C for 3 h to give 5a and 5b in 21 and 11% yields, respectively.

So far, the pathway for production of such quadruply bridged M₂Se₄ clusters is not completely clear. However, a possible pathway might be suggested, which involves the two PhCH₂Se bridged intermediates **m** (Scheme 2) produced through reaction of triply bonded complexes $[(\eta^{5}-RC_{5}H_{4})_{2}M_{2}(CO)_{4}]$ with $(PhCH_2)_2Se_2$ and subsequent reaction of **m** with elemental selenium generated in situ from the decomposition of (PhCH₂)₂Se₂ to finally give **1a,b-6a,b**. This suggested pathway is primarily based on the following facts. (i) The triply bonded complexes can react with Ph₂Se₂ to give fully characterized analogs of the intermediates **m** $[(\eta^5 - RC_5H_4)_2M_2(CO)_2(\mu - SePh)_2]$ [18]. (ii) Treatment of such analogs with elemental selenium

Scheme 2.

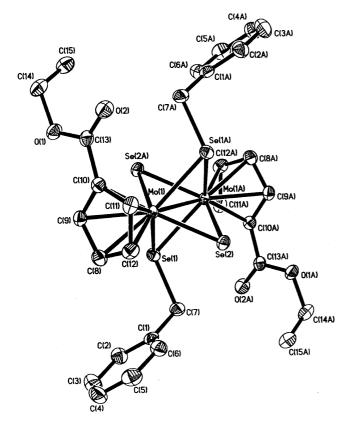


Fig. 3. ORTEP drawing of 3a with atom-labeling scheme.

yields a series of analogs of **1a,b-6a,b** $[(\eta^5 - RC_5H_4)_2M_2(\mu-Se)_2(\mu-SePh)_2]$ [19]. (iii) (PhCH₂)₂Se₂ is thermally less stable than Ph₂Se₂ and thus can be

decomposed at higher temperatures to give elemental Se [20]. (iv) After about 15 min in reaction of $[(\eta^5 RC_{5}H_{4})_{2}M_{2}(CO)_{4}$ (M = Mo, $R = EtO_2C$) with (PhCH₂)₂Se₂, TLC showed that two contiguous green and brown spots appeared, which were also observed to correspond to trans/antiand $trans/syn-[(\eta^5 RC_5H_4)_2M_2(CO)_2(\mu$ -SePh)₂], yielded from the reaction with Ph₂Se₂ [18]. In addition, with the lapse of reaction time, TLC showed that the two spots completely disappeared and instead two new green spots appeared, which have been fully characterized as 3a and 3b. However, to further support this pathway more work needs to be done in the future.

2.2. Crystal structures of **3a** and **3b**

To confirm the *trans/anti* and *trans/syn* structures of **1a,b-6a,b**, we carried out the single-crystal X-ray diffraction analyses for one pair of isomers, **3a** and **3b**. The ORTEP plots of **3a** and **3b** are shown in Figs. 3 and 4, whereas the selected bond lengths and angles of **3a** and **3b** are listed in Tables 1 and 2, respectively.

As seen from Figs. 3 and 4, the molecules of **3a** and **3b** both contain two naked Se and two PhCH₂Se ligands, quadruply bridged to two Mo atoms, each carrying one η^5 -EtO₂CC₅H₄ ligand. In addition, while for **3a** and **3b** the two naked Se, the two PhCH₂Se and the two η^5 -EtO₂CC₅H₄ are *trans* to each other with respect to the Mo–Mo vector, for **3a** the two methylene carbon atoms of two benzyl groups are attached to Se atoms in the *anti* orientation with respect to the Mo₂Se₂ (seleno-

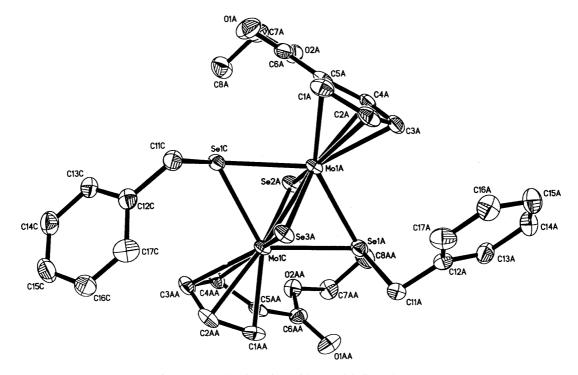


Fig. 4. ORTEP drawing of 3b with atom-labeling scheme.

Table 1 Selected bond lengths (Å) and angles (°) for 3a

Bond length			
Mo(1)-Se(2)	2.4793(5)	Mo(1)-Se(1)	2.5880(5)
Mo(1)-Se(2A)	2.4751(5)	Mo(1)-Se(1A)	2.5984(5)
Mo(1)-Mo(1A)	2.6484(7)	Se(1)-Mo(1A)	2.5984(5)
Se(2)-Mo(1A)	2.4751(5)	Se(1)-C(7)	1.999(4)
Bond angles			
Se(2A)-Mo(1)	115.374(18)	Se(2A)-Mo(1)	70.366(18)
-Se(2)		-Se(1)	
Se(2)-Mo(1)	78.058(18)	Se(2A)-Mo(1)	77.936(18)
-Se(1)		-Se(1A)	
Se(1)-Mo(1)	118.588(17)	Se(2A)-Mo(1)	57.763(15)
-Se(1A)		-Mo(1A)	
Se(2)-Mo(1)	57.611(15)	Se(1)-Mo(1)	59.486(15)
-Mo(1A)		-Mo(1A)	
Mo(1)-Se(1)	61.412(17)	Mo(1A)-Se(2)	64.626(17)
-Mo(1A)		-Mo(1)	

Table 2		
Selected bo	nd lengths (Å) and angles (°) for $3b$	

Bond lengths			
Mo(1A)-Se(3A)	2.4732(9)	Mo(1A)-Se(2A)	2.4774(10)
Mo(1A)-Se(1C)	2.5839(8)	Mo(1A)-Se(1A)	2.5868(8)
Mo(1A)-Mo(1C)	2.6498(9)	Se(1A)-Mo(1C)	2.5839(8)
Se(2A)-Mo(1C)	2.4774(10)	Se(3A)-Mo(1C)	2.4732(9)
Bond angles			
Se(3A)-Mo(1A)	115.28(2)	Se(3A)-Mo(1A)	77.13(2)
-Se(2A)		-Se(1C)	
Se(2A)-Mo(1A)	71.03(2)	Se(3A)-Mo(1A)	77.08(2)
-Se(1C)		-Se(1A)	
Se(2A)-Mo(1A)	70.98(2)	Se(1C)-Mo(1A)	117.86(2)
-Se(1A)		-Se(1A)	
Se(3A)-Mo(1A)	57.609(16)	Me(1C)-Se(1A)	61.66(2)
-Mo(1C)		-Mo(1A)	
Mo(1C)-Se(2A)	64.66(3)	Mo(1A)-Se(3A)	64.78(3)
-Mo(1A)		-Mo(1C)	

lato) ring, and for **3b** in the *syn* orientation. Interestingly, for **3a** and **3b**, the two Mo and the two naked Se atoms, as well as the two Mo and the two selenolato Se atoms are respectively coplanar and the two planes are perpendicular to each other. In addition, for **3a** and **3b** the two naked and two selenolato Se atoms are found to be symmetrically bonded to the two Mo atoms, respectively, and the four Se atoms lie in a plane, which is perpendicular to the above two planes through the midpoint of the Mo–Mo bond. In fact, the corresponding bond lengths and angles in **3a** and **3b** are almost the same. For example, the Mo=Mo double bond lengths equal 2.648 for **3a** and 2.650 for **3b**, which are very close to that of *trans/syn*-[Cp₂Mo₂(μ -Se)₂(μ -SePh)₂] (2.653) [21]. In addition, the average Mo–Se (naked)–Mo and Mo–Se (selenolato)–Mo bond angles are 64.63°, 61.41° for **3a** and 64.72°, 61.66° for **3b**, respectively, which are very close to corresponding those of *trans/syn*-[Cp₂Mo₂(μ -Se)₂(μ -SePh)₂] (64.6° and 61.4°) [21]. It is worth noting that while **3a** is centrosymmetric, **3b** is non-centrosymmetric due to the *syn* orientation of the two methylene carbon atoms of its two benzyl groups. In addition, for both **3a** and **3b**, the two phenyl groups attached to *anti*- or *syn*-methylene carbon atoms all bent toward the directions far away from the EtO₂C substituents in order to minimize the strong steric repulsions between them.

3. Experimental

All reactions were carried out under an atmosphere of purified nitrogen using standard Schlenk or vacuumline techniques. Toluene was distilled from sodium-benzophenone ketyl under nitrogen. (PhCH₂)₂Se₂ [22] and $[(\eta^{5}-RC_{5}H_{4})_{2}M_{2}(CO)_{4}]$ (M = Mo, W; R = MeCO, MeO₂C, EtO₂C) [23,24] were prepared according to literature methods. The products were separated by preparative TLC (glass plates, $20 \times 25 \times 0.25$ cm; silica gel H, 10-40 µm). All samples for analyses were recrystallized in a mixed CH₂Cl₂/hexane solvent. IR spectra were recorded on a Nicolet FT-IR 5DX infrared spectrophotometer. 1H- and 77Se-NMR spectra were recorded on a JEOL FX-90Q and a Bruker ARX-500 NMR spectrometers. ⁷⁷Se-NMR spectra were referenced to $Ph_2Se_2(\delta \ 0)$. C/H analysis and melting point (m.p.) determination were performed on a Yanaco CHN corder MT-3 analyzer and on a Yanaco Mp-500 apparatus, respectively.

3.1. Preparation of 1a and 1b

A 100-ml three-necked flask fitted with a magnetic stir-bar, a rubber septum and a reflux condenser topped with a nitrogen inlet tube was charged with 0.777 g (1.5 mmol) of $[(\eta^5 - MeCOC_5H_4)_2Mo_2(CO)_4]$ and 0.510 g (1.5 mmol) of $(PhCH_2)_2Se_2$ in 40 ml of toluene. The mixture was refluxed for 2 h. Solvent was removed under reduced pressure. The residue was subjected to TLC separation using CH₂Cl₂ as eluent. The first main band afforded 0.138 g (10%) of **1a** as a green solid. M.p. 176-178°C. Anal. Found: C, 37.15; H, 3.14. C₂₈H₂₈Mo₂O₂Se₄ Calc.: C, 37.19; H, 3.12. IR (KBr disk): acetyl carbonyl C=O 1680s cm⁻¹. ¹H-NMR (CDCl₃): 2.44 (s, 6H, 2CH₃), 2.84 (s, 4H, 2CH₂), 6.04– 6.20, 6.48-6.60, 6.72-6.82 (3m, 8H, $2C_5H_4$), 6.84-6.96, 7.12–7.24 (2m, 10H, $2C_6H_5$). ⁷⁷Se-NMR (Ph₂Se₂, CDCl₃): -252.8 (t, ${}^{2}J_{SeH} = 19.2$ Hz, $2SeCH_{2}Ph$), 783.97 (s, 2Se). The second main band afforded 0.139 g (10%) of **1b** as a green solid. M.p. 168–169°C. Anal. Found: C, 37.12; H, 2.80. C₂₈H₂₈Mo₂O₂Se₄ Calc.: C,

47

37.19; H, 3.12. IR (KBr disk): acetyl carbonyl C=O 1678s cm⁻¹. ¹H-NMR (CDCl₃): 2.41 (s, 6H, 2CH₃), 2.84 (s, 4H, 2CH₂), 6.01, 6.22 (2t, 8H, 2CH₅H₄), 6.72– 7.00, 7.08–7.27 (2m, 10H, 2C₆H₅). ⁷⁷Se-NMR (Ph₂Se₂, CDCl₃): -212.8 (t, ² $J_{SeH} = 16.9$ Hz, 2SeCH₂Ph), 1035.5 (s, 2Se).

3.2. Preparation of 2a and 2b

The same procedure as that for 1a and 1b was followed, but 0.825 g (1.5 mmol) of $[(\eta^5 MeO_2CC_5H_4)_2Mo_2(CO)_4$] was used instead of $[(\eta^5 MeCOC_5H_4)_2Mo_2(CO)_4$]. The first main band afforded 0.162 g (12%) of 2a as a green solid. M.p. (dec.) 168°C. Anal. Found: C, 36.20; H 3.22. C₂₈H₂₈Mo₂O₄Se₄ Calc.: C, 35.92; H, 3.01. IR (KBr disk): ester carbonyl C=O 1719s cm⁻¹. ¹H-NMR (CDCl₃): 2.83 (s, 4H, 2CH₂), 3.73 (s, 6H, 2CH₃), 5.90-6.10, 6.27-6.31, 6.59-6.63 (3m, 8H, 2C₅H₄), 6.72-6.88, 7.10-7.25 (2m, 10H, $2C_6H_5$). The second main band afforded 0.176 g (13%) of **2b** as a green solid. M.p. 150–151°C. Anal. Found: C, 36.24; H, 2.80. C₂₈H₂₈Mo₂O₄Se₄ Calc.: C, 35.92; H, 3.01. IR (KBr disk): ester carbonyl C=O 1720s cm $^{-1}$. ¹H-NMR (CDCl₃): 2.82 (s, 4H, 2CH₂), 3.72 (s, 6H, 2CH₃), 5.91, 6.40 (2t, 8H, 2C₅H₄), 6.68–6.96, 7.08–7.22 $(2m, 10H, 2C_6H_5)$.

3.3. Preparation of 3a and 3b

The same procedure as that for 1a and 1b was followed, but 0.867 g (1.5 mmol) of $[(\eta^5 EtO_2CC_5H_4)_2Mo_2(CO)_4$] was used instead of $[(\eta^5 MeCOC_5H_4$)₂ $Mo_2(CO)_4$]. The first main band afforded 0.172 g (12%) of **3a** as a green solid. M.p. (dec.) 158–159°C. Anal. Found: C, 37.40; H 2.95. C₃₀H₃₂Mo₂O₄Se₄ Calc.: C, 37.37; H, 3.34. IR (KBr disk): ester carbonyl C=O 1713s cm $^{-1}$. ¹H-NMR $(CDCl_3)$: 1.30 (t, J = 7.2 Hz, 6H, $2CH_3$) 2.88 (s, 4H, $2CH_2Ph$), 4.24 (q, J = 7.2 Hz, 4H, $2CH_2CH_3$), 5.96– 6.12, 6.20-6.32, 6.56-6.68 (3m, 8H, 2C₅H₄), 6.76-6.96, 7.14–7.36 (2m, 10H, $2C_6H_5$). The second main band afforded 0.175 g (12%) of 3b as a green solid. M.p. 131–132°C. Anal. Found: C, 37.38; H, 3.25. C₃₀H₃₂Mo₂ O₄Se₄ Calc.: C, 37.37; H, 3.34. IR (KBr disk): ester carbonyl C=O 1704vs cm⁻¹. ¹H-NMR $(CDCl_3)$: 1.23 (t, J = 7.2 Hz, 6H, 2CH₃), 2.79 (s, 4H, $2CH_2Ph$), 4.18 (q, J = 7.2 Hz, 4H, $2CH_2CH_3$), 5.90, 6.29 (2t, 8H, 2C₅H₄), 6.72–6.90, 7.04–7.24 (2m, 10H, $2C_6H_5$).

3.4. Preparation of 4a and 4b

The same procedure as that for **1a** and **1b** was followed, but 1.041 g (1.5 mmol) of $[(\eta^5-MeCOC_5H_4)_2W_2(CO)_4]$ was used instead of $[(\eta^5-MeCOC_5H_4)_2Mo_2(CO)_4]$ and the reaction mixture was

refluxed for 1 h. The first main band afforded 0.396 g (24%) of 4a as a purple solid. M.p. (dec.) 182°C. Anal. Found: C, 30.89; H 2.32. C₂₈H₂₈O₂ Se₄W₂ Calc.: C, 31.14%; H, 2.61. IR (KBr disk): ester carbonyl C=O 1677vs cm⁻¹. ¹H-NMR (CDCl₃): 2.44 (s, 6H, 2CH₃), 2.96 (s, 4H, 2CH₂), 6.04–6.28, 6.44–6.62, 6.68–6.78 (3m, 8H, 2C₅H₄), 6.80-6.96, 7.12-7.24 (2m, 10H, $2C_6H_5$). ⁷⁷Se-NMR (Ph₂Se₂, CDCl₃): -458.8 (t, ${}^{2}J_{\text{SeH}} = 17.7$ Hz, 2SeCH₂Ph), 1073.4 (s, 2Se). The second main band afforded 0.282 g (17%) of 4b as a purple solid. M.p. 207-208°C. Anal. Found: C, 31.18; H, 2.52. C₂₈H₂₈O₂ Se₄W₂ Calc.: C, 31.14; H, 2.61. IR (KBr disk): ester carbonyl C=O 1674vs cm⁻¹. ¹H-NMR (CDCl₃): 2.44 (s, 6H, 2CH₃), 3.05 (s, 4H, 2CH₂), 6.09, 6.29 (2t, 8H, 2C₅H₄), 6.77–7.00, 7.16–7.26 (2m, 10H, $2C_6H_5$).

3.5. Preparation of **5a** and **5b**

The same procedure as that for 4a and 4b was followed, but 1.089 g (1.5 mmol) of $[(\eta^{5} MeO_2CC_5H_4)_2W_2(CO)_4$] was used instead of $[(\eta^5 - \eta^5 - \eta^2)_2W_2(CO)_4]$ $MeCOC_5H_4)_2W_2(CO)_4$]. The first main band afforded 0.413 g (25%) of 5a as a purple-red solid. M.p. (dec.) 162°C. Anal. Found: C, 29.83; H 2.04. C₂₈H₂₈O₄Se₄W₂ Calc.:C, 30.24; H, 2.54. IR (KBr disk): ester carbonyl C=O 1718vs cm⁻¹. ¹H-NMR (CDCl₃): 2.96 (s, 4H, 2CH₂), 3.74 (s, 6H, 2CH₃), 5.88–6.20, 6.28–6.42, 6.58– 6.72 (3m, 8H, 2C₅H₄), 6.76–6.96, 7.08–7.26 (2m, 10H, $2C_6H_5$). The second main band afforded 0.234 g (14%) of 5b as a purple-red solid. M.p. 159-161°C. Anal. Found: C, 30.45; H, 2.25. C₂₈H₂₈O₄Se₄W₂ Calc.: C, 30.24; H, 2.54. IR (KBr disk): ester carbonyl C=O 1718vs cm⁻¹. ¹H-NMR (CDCl₃): 3.03 (s, 4H, 2CH₂), 3.74 (s, 6H, 2CH₃), 6.00, 6.41 (2t, 8H, 2C₅H₄), 6.72-6.96, 7.08-7.24 (2m, 10H, 2C₆H₅). ⁷⁷Se-NMR (Ph₂Se₂, CDCl₃): -412.5 (t, ${}^{2}J_{SeH} = 16.6$ Hz, 2SeCH₂Ph), 735.5 (s, 2Se). 5a and 5b were also synthesized through the solid state reaction method described below. To a 50-ml Schenk flask, 0.520 g (0.717 mmol) of $[(\eta^5 -$ MeO₂CC₅H₄)₂W₂(CO)₄] and 0.244 g (0.717 mmol) (PhCH₂)₂Se₂ were added. The finely powdered and uniformly mixed reaction mixture was heated at 90°C for 3 h. After cooling to room temperature, the mixture was subjected to TLC separation using CH₂Cl₂ as eluent to give 0.168 g (21%) of **5a** and 0.087 g (11%) of **5**b.

3.6. Preparation of 6a and 6b

The same procedure as that for **4a** and **4b** was followed, but 1.131 g (1.5 mmol) of $[(\eta^5-$ EtO₂CC₅H₄)₂W₂(CO)₄] was used instead of $[(\eta^5-$ MeCOC₅H₄)₂W₂(CO)₄]. The first main band afforded 0.393 g (23%) of **6a** as a purple-red solid. M.p. 170– 172°C. Anal. Found: C, 31.64; H 2.31. C₃₀H₃₂O₄Se₄W₂ Calc.: C, 31.61; H, 2.63. IR (KBr disk): ester carbonyl C=O 1713s cm⁻¹. ¹H-NMR (CDCl₃): 1.27 (t, J = 7.2 Hz, 6H, 2CH₃), 2.97 (s, 4H, 2CH₂Ph), 4.22 (q, J = 7.2 Hz, 4H, 2CH₂CH₃), 5.96–6.18, 6.20–6.36, 6.52–6.68 (3m, 8H, 2C₅H₄), 6.72–7.00, 7.04–7.24 (2m, 10H, 2C₆H₅). The second main band afforded 0.266 g (16%) of **6b** as a purple-red solid. M.p. 141–142°C. Anal. Found: C, 31.64; H, 2.61. C₃₀H₃₂O₄Se₄W₂ Calc.: C, 31.61; H, 2.63. IR (KBr disk): ester carbonyl C=O 1706s cm⁻¹. ¹H-NMR (CDCl₃): 1.28 (t, J = 7.2 Hz, 6H, 2CH₃), 3.06 (s, 4H, 2CH₂Ph), 4.22 (q, J = 7.2 Hz, 4H, 2CH₂CH₃), 6.03, 6.38 (2t, 8H, 2C₅H₄), 6.72–7.00, 7.12–7.44 (2m, 10H, 2C₆H₅).

3.7. X-ray structure determinations of 3a and 3b

Single crystals of **3a** and **3b** suitable for X-ray diffraction analyses were grown by slow evaporation of their CH₂CH₂:petroleum ether (1:2, v/v) solutions in a refrigerator. The single crystal of **3a** ($0.20 \times 0.15 \times 0.10$ mm) or that of **3b** ($0.3 \times 0.25 \times 0.2$ mm) was glued to a glass fiber and mounted on a Bruker Smart 1000 automated diffractometer. Data were collected at room temperature, using graphite-monochromated Mo-K_{α}

Table 3

Crystal data and structure refinements for 3a and 3b

	3a	3b
Empirical formula	C ₃₀ H ₃₂ Mo ₂ O ₄ Se ₄	C ₃₀ H ₃₂ Mo ₂ O ₄ Se ₄
Formula weight	964.28	964.28
Temperature (K)	293(2)	293(2)
Crystal system	Monoclinic	Orthorhombic
Space group	$P2_{1}/c$	Cccm
Unit cell dimensions		
a (Å)	13.0323(15)	14.1150(11)
b (Å)	10.4638(12)	15.8498(11)
<i>c</i> (Å)	11.9818(13)	27.7442(2)
β (°)	108.758(2)	90
V (Å ³)	1547.1(3)	6206.8(8)
Ζ	2	8
$D_{\rm calc}~({\rm g~cm^{-3}})$	2.070	2.064
Scan type	ω scans	ω scans
Absorption coefficient (mm ⁻¹)	5.550	5.534
F(000)	928	3712
Theta range for data collection (°)	1.65–26.44	2.07–26.34
Reflections collected	7158	14 081
Independent reflections	3169	5374 ($R_{\rm int} = 0.0500$)
-	$(R_{\rm int} = 0.0526)$	
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0322,$	
	$wR_2 = 0.0614$	
Final R indices $[I > 4\sigma(I)]$	2	$R_1 = 0.0311$,
		$wR_2 = 0.0773$
R indices (all data)	$R_1 = 0.0494,$	$R_1 = 0.0367$,
	$wR_2 = 0.0662$	$wR_2 = 0.0799$
Goodness-of-fit on F^2	0.937	1.093
Largest difference peak	0.547 and	0.813 and
and hole (e $Å^{-3}$)	-0.682	-0.543

radiation ($\lambda = 0.71073$ Å) in the scanning mode. The structures of **3a** and **3b** were solved by direct methods and refined by full-matrix least-squares techniques (SHELXL-97) on F^2 . Hydrogen atoms were located using the geometric method. A weight scheme of $w = 1/\sigma^2(F_0^2) + (0.0284P)^2 + 0.0000P$ [where $P = (F_0^2 + 2F_c^2)/3$] was applied to the data for **3a** and $w = 1/\sigma^2(F_0^2) + (0.0241P)^2 + 0.6395P$ [where $P = (F_0^2 + 2F_c^2)/3$] was applied to the data for **3b**. The crystal data and structural refinements details are summarized in Table 3.

4. Supplementary material

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos. 141747 for compound **3a** and 141746 for compound **3b**. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www. ccdc.cam.ac.uk).

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China, the State Key Laboratory of Elemento-Organic Chemistry and the State Key Laboratory of Structural Chemistry for financial support of this work.

References

- (a) R. Davis, L.A.P. Kane-Maguire, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Vol. 3. Pergamon Press, New York, 1982, Chapters 26–28.
 (b) M.D. Curtis, Polyhedron 6 (1987) 759. (c) L.-C. Song, J.-Q. Wang, Youji Huaxue 14 (1994) 225.
- [2] E.I. Stiefiel, Prog. Inorg. Chem. 22 (1977) 1.
- [3] R.H. Holm, Chem. Soc. Rev. 10 (1981) 455.
- [4] D. Coucouvanis, Acc. Chem. Res. 24 (1991) 1.
- [5] M. Rakowski Dubois, Chem. Rev. 89 (1989) 1.
- [6] B.C. Wiegand, C.M. Friend, Chem. Rev. 92 (1992) 491.
- [7] P. Schollhammer, F.Y. Petillon, R. Pichon, S. Poder-Guillou, J. Talarmin, K.W. Muir, L. Manojlovic-Muir, Organometallics 14 (1995) 2277.
- [8] J. Wachter, J. Coord. Chem. 15 (1987) 219.
- [9] M.D. Curtis, P.D. Williams, W.M. Butler, Inorg. Chem. 27 (1988) 2853.
- [10] P. Li, M.D. Curtis, Inorg. Chem. 29 (1990) 1242.
- [11] I.L. Eremenko, H. Berke, B.I. Kolobkov, V.M. Novotortsev, Organometallics 13 (1994) 244.
- [12] L.-C. Roof, J.W. Kolis, Chem. Rev. 93 (1993) 1037.
- [13] P. Mathur, Md.M. Hossain, S.B. Umbarkar, C.V.V. Satyanarayana, A.L. Rheingold, L.M. Liable-Sands, G.P.A. Yap, Organometallics 15 (1996) 1898.

- [14] (a) L.-C. Song, J.-Q. Wang, Q.-M. Hu, X.-Y. Huang, J. Coord. Chem. 46 (1999) 245. (b) L.-C. Song, J.-Q. Wang, Q.-M. Hu, X.-Y. Huang, Polyhedron 15 (1996) 4295. (c) L.-C. Song, J.-Q. Wang, X.-Y. Huang, Polyhedron 17 (1998) 3579. (d) L.-C. Song, J.-Q. Wang, Q.-M. Hu, R.-J. Wang, T.C.W. Mak, Inorg. Chim. Acta 256 (1997) 129. (e) L.-C. Song, J.-Q. Wang, Q.-M. Hu, J. Sun, J. Coord. Chem., 42 (1997) 63.
- [15] (a) W.P. Hart, M.D. Rausch, J. Organomet. Chem. 355 (1988)
 455. (b) L.-C. Song, J.-Y. Shen, Q.-M. Hu, X.-Y. Huang, Organometallics 14 (1995) 98.
- [16] (a) P. Mathur, Md.M. Hossain, S.B. Umbarkar, C.V.V. Satyanarayana, S.S. Tavale, V.G. Puranik, Organometallics 14 (1995) 959. (b) J.W. van Hal, K.H. Whitmire, Organometallics 17 (1998) 5197.

- [17] P. Mathur, S. Ghosh, A. Sarkar, C. Then, Organometallics 17 (1998) 3926.
- [18] L.-C. Song, Y.-C. Shi, Q.-M. Hu, F. Du, X.-A. Mao, Polyhedron 18 (1999) 19.
- [19] L.-C. Song, Y.-C. Shi, W.-F. Zhu, Polyhedron 18 (1999) 2163.
- [20] H.K. Spencer, M.P. Cava, J. Org. Chem. 42 (1997) 2937.
- [21] H. Rakoczy, M. Schollenberger, B. Nuber, M.L. Ziegler, J. Organomet. Chem. 467 (1994) 217.
- [22] J.Q. Li, W.L. Bao, P. Lue, X.J. Zhou, Synth. Commun. 21 (1991) 799.
- [23] L.-C. Song, J.-Q. Wang, W.-J. Zhao, Q.-M. Hu, Y.-Q. Fang, S.-J. Zhang, R.-J. Wang, H.-G. Wang, J. Organomet. Chem. 453 (1993) 105.
- [24] L.-C. Song, J.-Y. Shen, J.-Q. Wang, Q.-M. Hu, R.-J. Wang, H.-G. Wang, Polyhedron 13 (1994) 3235.